
LINEAR OPENINGS IN ARBITRARY ORIENTATION IN O(1) PER PIXEL

V. Morard, P. Dokladal, E. Decencière

MINES ParisTech,
CMM - Centre de Morphologie Mathématique, Mathématique et Systèmes,

35, rue St. Honoré, 77305-Fontainebleau-Cedex, France

ABSTRACT

Openings constitute one of the fundamental operators in

mathematical morphology. They can be applied to a wide

range of applications, including noise reduction and feature

extraction and enhancement. In this paper, we introduce

a new, efficient and adaptable algorithm to compute one

dimensional openings along discrete lines, in arbitrary orien-

tation. The complexity of this algorithm is linear with respect

to the number of pixels of the image. More interestingly, the

average complexity per pixel is constant, with respect to the

size of the opening.

Index Terms— Algorithms, Mathematical Morphology,

Openings, Feature Extraction, Filtering

1. INTRODUCTION

Openings and more generally, mathematical morphology

(MM), are concepts introduced by Serra and Matheron in

the late sixties ([1] and [2]). Any increasing, anti-extensive

and idempotent operator is an opening. It can be applied

to many applications for filtering and features enhancement.

Computing openings with segments filters out the noise and

unwanted structures. It can also be used to extract texture de-

scriptors, the local orientation or the size distributions. This

is a powerful operator, however, a naive implementation has

a considerable complexity of O(λ) per pixel. We show that

it can be done in O(1), independently of λ, the size of the

linear segment.

Over the last years, some authors have focused their work

on the speed and they have greatly improved the complex-

ity of these operators. Van Herk proposed a one-dimensional

(1D) algorithm to deal with erosions and dilations with no

more than three comparisons per pixel [3]. This is a con-

stant time algorithm with respect to λ, which has been studied

and improved by many authors, including Soille et al, in [4].

Later, Van Droogenbroeck and Buckley [5], designed a very

fast algorithm for erosions and openings, based on anchors.

They managed to reduce the number of redundant compar-

ison by introducing the notion of anchors (pixels which are

not affected by an operator). Vincent, in [6], has worked on

granulometries and opening trees and Menotti et al, in [7],

have constructed the 1D component tree in linear time, with

respect to the number of pixels of the image.

Here, we start from Dokladal’s ([8]) and Soille’s work to

define a novel algorithm to build 1D openings at arbitrary

orientations. The section 2 will introduce the basic notions

whereas sections 3 and 4 will respectively describe this al-

gorithm, the timings and the comparison with others efficient

methods.

2. BASIC NOTIONS

MM is based on the notion of structuring elements (SE).

Hereafter, we will used a linear SE (having a form of a line),

of size λ and oriented in the angle α. With this SE, written

Bα
λ , we define two basic operators for a grey level image f ,

the erosion and the dilation.

εαλ(f)(x) = ∧{f(x+ y), y ∈ Bα
λ} (1)

δαλ (f)(x) = ∨{f(x− y), y ∈ Bα
λ} (2)

If we apply an erosion followed by a dilation on f , we get a

filter called an opening.

γα
λ (f) = δαλ (ε

α
λ(f)) (3)

Further operators can be built with these linear openings. The

first one is ∨γλ(f). It is computed by taking the supremum

of the openings by segments in all orientations.

∨γλ(f) =
∨

α∈[0,180[

γα
λ (f) (4)

The second one, ζλ(f), can extract the local orientation of the

structures.

ζλ(f) = argsup γα
λ (f)

α∈[0,180[

(5)

Finally, the size distributions (granulometries) can also be

deduced from a family of openings of increasing size.

1457978-1-4577-0539-7/11/$26.00 ©2011 IEEE ICASSP 2011

3. OPENINGS IN O(1) PER PIXEL

Openings in constant time with respect to λ, are based on

adapted data structures. We use a stack, which is a lifo con-

tainer (”last in, first out”) associated with an object, called

hereafter, a flat zone (FZ). A FZ is composed of 3 attributes:

its starting position (StartPos), its grey level value (F) and

a flag (Passed). Having the information of the starting and

the reading position (rp), we are able to simply compute its

current length. Note, however, if the flag Passed is raised,

its current length is greater than λ, no matter the value of

StartPos and rp.

if(Passed)

{
then Length ≥ λ

else Length = rp− StartPos.
(6)

This flag will be set to true if and only if this FZ is the

only one in the stack and if we ensure it has got a length

greater than λ. We introduce this important flag to remem-

ber the state of the previous popped FZ (see line 8).

For the stack consistency, we have to introduce a key fea-

ture as follows:

Proposition 1. A stack of flat zones will always be ordered by
increasing order with respect to F .

This proposition introduces the necessary hierarchy be-

tween flat zones and this is ensured by the code (lines 1, 4, 5).

Algorithm 1 presents the pseudo code which will be executed

for each line of an image and for each pixel of this line.

3.1. Description of the 1D algorithm

Let Stack be our stack of flat zones with the following

functions: push(), pop(), top() and empty(). There-

fore, reading an attribute of a flat zone will be written

Stack.top().x with x referring to F , StartPos or Passed.

Inserting a new flat zone into the stack will be written:

Stack.push(F, StartPos, Passed) while removing a FZ:

fz = MyStack.pop(). The reading position rp will be set

to 0 at the beginning of each line and its value will be incre-

mented by one when the function Process a pixel() ends. F
is the grey level of the current pixel at position rp.

When we process a new pixel, 3 cases exist:

- The current pixel is a part of the last flat zone pushed:

(F = Stack.top().F). We do not do anything since this pixel

does not bring new information.

- The current pixel has a higher value, line 1. We store

this new flat zone by pushing it, into the stack (line 2).

- The third case is more complex since the proposition 1

should always be applied. F < Stack.top().F means that

this is the end of, at least, one FZ. Line 5 suppresses from the

stack, the topmost flat zone. We compute its current length

and we compare it to the threshold value λ (line 6). By con-

struction, if the popped flat zone is larger than λ, this guaran-

tees that all the FZ within the stack, will also be larger than λ.

Hence, we necessarily know their final output values and we

write them with the function WriteF latZones() (A FZ ends

when begin the next one). To avoid writing twice the value of

a pixel, the stack is emptied while we write each FZ in the out-

put image. We leave this function just after we have pushed

the current flat zone into the stack, with the flag Passed, set

to true (line 8).

When the length of the popped FZ (fz) is smaller than

λ, we have to check whether the stack is empty. If so, we

push the current flat zone with the correct starting position

and we leave this function (lines 11). Otherwise, we have to

compare the current pixel to the new top most FZ. Again, the

same three cases could appear: we do not change anything

if F = Stack.top().F , we create a new flat zone if F >
Stack.top().F and we iterate from line 4 to 14 while F <
Stack.top().F .

At the end of the 1D signal, some flat zones can still be

stored within the stack. Hence, we pop these flat zones and,

depending of their length, we write their output values.

Algorithm 1 Process a pixel(F, rp, Stack,Out)

1: if Stack.empty() or F > Stack.top().F then
2: Stack.push(F, rp, false)
3: else
4: while F < Stack.top().F do
5: fz = Stack.pop()
6: if fz.Passed or rp− fz.StartPos ≥ λ then
7: WriteF latZones(F, rp, Stack,Out, fz)
8: Stack.push(F, rp, true)
9: break

10: else if Stack.empty() or F > Stack.top().F then
11: Stack.push(F, fz.StartPos, false)
12: break
13: end if
14: end while
15: end if

3.2. Extraction of discrete lines in arbitrary angle

The function described above, takes one pixel as input. This

algorithm is clearly independent of the orientation of the line.

Soille and al, in [4], described a way to go through all pixels

of an image at a given orientation. They used Bresenham’s

lines to construct the best 1D signal at orientation α. More in-

terestingly, the logic behind the construction of lines ensures

that each pixel will be processed only once. Thus, this is very

important since it allows to run in place. Few minor modifi-

cations have to be applied in the algorithm 1: we introduce a

line buffer to store the index position of the pixels as soon as

they are processed. Hence, we could easily write the result of

the filter in the output image with no other extra computation.

Figure 1 presents the results of the operators γα
λ , ∨γλ and

ζλ on a fingerprint image.

1458

(a) Input (b) γ70
λ (c) ∨γλ (d) ζλ

Fig. 1. Results of three operators with λ = 21 pixels. From

left to right, the initial image, an oriented filtering (70 de-

grees), the enhancement of linear structures and the local ori-

entation extraction.

3.3. Complexity of the 1D algorithm

Let n be the number of pixels of the image and m be the num-

ber of grey levels. We consider a rectangular image, with W
and H its width and height, respectively and a linear hori-

zontal opening. Considering a complexity analysis, we have

to analyse the two main loops of algorithm 1. The first one

is a loop where the function Process a pixel() will be ex-

ecuted for each pixel of the image (n times). This function

uses a stack, where we insert a new flat zone when the reading

pixel is bigger than the topmost FZ. Therefore, the maximal

number of flat zones that can be inserted into the stack will

be min(W,m). This bound will be reached with a strictly

monotonic signal.

The second inner loop (while) is controlled by this stack.

The function WriteF latZones() is called a variable number

of time, but we ensure that each pixel will be written exactly

once. In the worst case, algorithm 1 also ensures that each

pixel will be pushed and popped once and this is strictly inde-

pendent of the size of the opening.

The complexity is varying from one pixel to another.

However, in average and in the worst case, we only have few

comparisons, a push, a pop, and a write on the output image,

per pixel. All these operations are computed in O(1). Hence,

this algorithm have a constant complexity with respect to λ.

We note, however, that the number of comparisons and

the number of pixels inserted into the stack depend on the

image’s content. A constant signal will reach a theoretical

lower bound with only one comparison per pixel (See section

4.1).

Therefore, the overall complexity of this algorithm for an

image is in average, O(n).

4. TIMINGS AND COMPARISON

4.1. Benchmark on the image content

By analysing algorithm 1, we notice that the timings will

change with the image content. A constant image will define

the theoretical lower bound of this algorithm, with only one

0

1

2

3

4

5

6

0 50 100 150 200
Size of the openings : λ (pixels)

Ti
m

e
 (m

s)

Goldhill
Random noise
Goldhill binary
Constant image

Fig. 2. Timings for horizontal openings of size λ for different

images (512× 512 pixels)

comparison per pixel. Figure 2 collects the timings for a hor-

izontal opening with respect to λ, for different images of size

512×512 pixels: goldhill, a binary version of goldhill, a ran-

dom and a constant picture. As expected, the constant image

defines the lower bound of this algorithm. We note that a pic-

ture with uniform noise is computed quicker than goldhill’s

image. A general rule for this algorithm is that, the timings

are correlated to the mean number of pixel into the stack. A

random signal will have, in average, fewer pixels in the stack

than a natural image.

The fewer flat zones and the closer you get to the theoret-

ical lower bound.

4.2. Benchmark on existing methods

For the sake of comparison, we have implemented 3 other al-

gorithms. The first one has been published by Soille, Breen

and Jones in [4]. It has also a complexity of O(1) per pixel,

building erosions and dilations with no more than 3 compar-

isons per pixel. It will be referenced as Soille’s algorithm

hereafter. The second method is the openings by anchors of

Van Droogenbroeck and Buckley, [3], available in [9]. The

third is the naive implementation of a linear opening. We note

that these algorithms are written in C++ using pointer arith-

metic. They have been integrated to the same platform, with

exactly the same interface. All the optimization flags are set

to true during the compilation. Therefore, no bias has been

introduced between these methods.

We will study exclusively horizontal openings, as, to

our knowledge, there is no existing implementation of Van

Droogenbroeck’s algorithm for openings at arbitrary angles.

Furthermore, we will only use 8 bits images as Van Droogen-

broeck’s algorithm is based on a histogram which is built for

this kind of pictures. For every λ, 100 independents realiza-

tions have been computed and averaged for each method. The

timings are shown in figure 3. The image used is goldhill,

having 512 × 512 pixels with 8 bits. We note that the results

are approximately the same with other images.

1459

Fig. 3. Timings for an horizontal opening with regard to λ for

different algorithm.

Fig. 4. Opening of size λ = 21 pixels. Van Droogenbroeck’s

algorithm is not correct at the beginning of the line. With

an opening of size 21 pixels, the output value should be the

smallest values of the first 21 pixels.

The difference between the naive implementation and oth-

ers methods is huge. The naive implementation’s complexity

is independent on the image content but it does depend on the

radius of the openings: O(λ× n).
Soille’s algorithm is not as fast as the 2 other methods,

and Van Droogenbroeck’s algorithm outperforms our algo-

rithm especially for large values of λ. Two reasons can be

pointed out to explain this difference:

• For our algorithm, every pixel of the output image is

written exactly once. This can slow down our algorithm

compared to an algorithm that only writes the modified

pixels.

• Van Droogenbroeck’s algorithm considers the infinite

signal domain. In practice, on bounded supports, the

result is incorrect around the borders, as shown in figure

4.

5. CONCLUSION

This paper introduces a novel algorithm to build one dimen-

sional openings with a constant complexity, with respect to

λ. It can be applied on floating-point data without addi-

tional computational time, as we only perform comparison

operations with no histogram. We have compared it to other

methods such as the naive implementation, Soille’s and Van

Droogenbroeck’s algorithm. Our method has very good exe-

cution times and we correctly handle the borders. Moreover,

with the construction of openings at arbitrary angles, we can

efficiently compute powerful operators such as the supremum

of openings or the local orientation.

For future work, we will do some small modifications of

this algorithm to compute granulometries in linear time with

respect to the number of pixels. This is an improvement com-

pared with Vincent’s algorithm presented in [6] (Vincent de-

fined a quasi linear algorithm). Again, with little change on

this very adaptable algorithm, we can also extract the compo-

nent tree in linear time. Finally, to increase the fexibility of

this operator, it can be extended to path operators.

6. REFERENCES

[1] G. Matheron, Random sets and integral geometry, Wiley

series in probability and mathematical statistics. Wiley,

New York,, 1974, Bibliography: p. 254-256.

[2] J. Serra, “Image analysis and mathematical morphology,”

Academic, London, vol. 1, 1982.

[3] M. Van Herk, “A fast algorithm for local minimum and

maximum filters on rectangular and octagonal kernels,”

Pattern Recognition Letters, vol. 13, no. 7, pp. 517–521,

1992.

[4] P. Soille, E.J. Breen, and R. Jones, “Recursive imple-

mentation of erosions and dilations along discrete lines at

arbitrary angles,” IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, vol. 18, no. 5, pp. 562–567,

1996.

[5] M. Van Droogenbroeck and MJ Buckley, “Morphologi-

cal erosions and openings: fast algorithms based on an-

chors,” Journal of Mathematical Imaging and Vision, vol.

22, no. 2, pp. 121–142, 2005.

[6] L. Vincent, “Granulometries and opening trees,” Mathe-
matical morphology, p. 57, 2000.

[7] D. Menotti, L. Najman, and A. de Albuquerque Araújo,

“1d component tree in linear time and space and its ap-

plication to gray-level image multithresholding,” in 8th
International Symposium on Mathematical Morphology
(ISMM), 2007, pp. 437–448.

[8] P. Dokládal and E. Dokládalová, “Grey-scale mor-

phology with spatially-variant rectangles in linear time,”

in Advanced Concepts for Intelligent Vision Systems.

Springer, 2008, pp. 674–685.

[9] R. Dardenne and M. Van Droogenbroeck, “libmorpho,

http://www.ulg.ac.be/telecom/research.html,” .

1460

